THE UCLA POSTDOCTORAL SCHOLARS & MENTORS AWARDS CEREMONY recognizes the important contributions that postdoctoral scholars and their mentors make to the interrelated missions of research, teaching, and public service at UCLA.

The Chancellor’s Award for Postdoctoral Research, established in 1998, is conferred on particularly accomplished postdoctoral scholars with nominees coming from virtually every discipline at UCLA -- from the basic and applied sciences to the professional schools, social sciences, and the humanities. An important criteria tied to the award selection is that an individual’s research accomplishments must show clear potential to have meaningful and enduring implications in their field.

In 2012, the former Society of Postdoctoral Scholars began honoring exemplary faculty in recognition of the importance of excellent mentorship for postdoctoral research success. Today, the Postdoctoral Association at UCLA continues that tradition of the Excellence in Postdoctoral Mentoring Award by recognizing faculty who as positive role models develop a supportive lab or work environment; collaborate on research projects; encourage confidence and creativity; foster excellent written and verbal communication skills; help establish professional networks at this campus and others; and actively support the transition from postdoctoral to independent research or other careers. Also representing various disciplines across campus, 14 faculty members have been nominated for this year’s award.

The Division of Graduate Education is a proud sponsor of the ceremony and very pleased to have you join us today as we acknowledge and honor the accomplishments and contributions of the award nominees and all postdoctoral scholars and their mentors at UCLA.
Awards Ceremony
CNSI Auditorium

Welcome & Introductions
Susan L. Ettner, Dean, Graduate Education

Remarks
Roger M. Wakimoto, Vice Chancellor for Research and Creative Activities

Chancellor’s Award for Postdoctoral Research
Susan L. Ettner Dean, Graduate Education
Roger M. Wakimoto, Vice Chancellor for Research and Creative Activities

Postdoctoral Mentoring Awards
Valeria González, Chair, Postdoctoral Association at UCLA
Martin Toderi, Vice-Chair of International Affairs Postdoctoral Association at UCLA

Closing Remarks
Susan L. Ettner, Dean, Graduate Education

Post-Awards Ceremony Reception
CNSI Terrace
Dr. Abt’s work as postdoctoral researcher in the Radu group at UCLA has focused on addressing critical gaps in knowledge regarding the mechanistic links between immune cell activation and metabolism while applying this new insight towards the development of new therapies for cancer patients. There were two central motivations underlying Evan’s postdoctoral research. The first, from a basic science perspective, was to define the mechanisms linking immune cell activation by emerging anti-cancer immunotherapies to alterations in nucleotide metabolism, the biochemical network responsible for the synthesis of nucleotide building blocks for DNA replication and repair. Second, from a translational perspective, Evan aimed to define new rationally-designed therapeutic and diagnostic strategies which leverage this new insight.

Research Mentor: Caius G. Radu, Molecular and Medical Pharmacology; Timothy R. Donahue, Surgery and Molecular and Medical Pharmacology

SIDDHARTH AGARWAL
Mechanical and Aerospace Engineering

An important frontier in materials science is the generation of active, responsive materials that can grow, move, and change shape like biological cells. Dr. Agarwal focuses on the design and demonstration of biomaterials made with minimal components (DNA, RNA, and few proteins) that exhibit dynamic responses to physical and chemical inputs. Taking inspiration from liquid cellular organelles, his most innovative work has shown how DNA molecules can be designed to make dynamic liquid droplets that form and disappear on demand. This technological blueprint could be used to separate and organize components in low-volume, low-cost reactions with major impact in biotechnology and chemical engineering.

Research Mentor: Elisa Franco, Mechanical and Aerospace Engineering

ELISA C. BAEK
Psychology

Dr. Baek’s research integrates interdisciplinary tools and methods to study social connection. One line of work investigates the relationship between social connection and the extent to which people experience the world similarly to those around them. For instance, one project highlights that well-connected individuals are exceptionally similar, on average, to other members of their communities in their neural responses while viewing external stimuli, whereas less well-connected individuals show idiosyncratic neural responses. A second line of Dr. Baek’s research investigates the role of social connection in information sharing, a ubiquitous and consequential human behavior. Across a number of studies, Dr. Baek has found that desires to socially connect with others drive information sharing behavior. In sum, Dr. Baek’s utilizes multidisciplinary tools and methods to probe links between shared understanding of the world and social connection, which has critical links to well-being.

Research Mentor: Carolyn Parkinson, Psychology
LORENZO BONINSEGNA
Microbiology, immunology and Molecular Genetics

The human genome folds into a specific three-dimensional configuration within the nucleus, which is essential to ensure its correct biological function, including gene transcription and regulation. Computer simulations of genome structures are in a unique position to clarify how chromatin architecture influences and impacts chromatin functional role within the cellular nuclear context, provided predictions from simulated structures are realistic. In this case, knowing the simulated position of all the genomic loci informs on how chromatin interacts with itself and with other elements of the nuclear environment, e.g. nuclear bodies, which is not accessible in experiments at that level of detail. A novel data-driven method was designed which numerically simulates a collection of genome structures by analyzing and combining information content from a variety of available data sources, each probing one facet of genome organization. Structures are accurate, highly predictive, capture structural variability and uncover the functional relevance of genome organization.

Research Mentor: Frank Alber, Microbiology, Immunology and Molecular Genetics

XIANGYANG CHEN
Chemistry and Biochemistry

Dr. Chen has been engaged in exploring the “black box” on the important fields of organocatalysis and organometallics by employing quantum mechanics, focusing on studying the catalytic mechanisms to establish the computational methods and discover the factors controlling selectivity and reactivity. She has opened the black box and created a “white box” of enlightenment about how complex catalysis works. These innovative achievements were published in high impact journals, and have expanded the use of computations to new world of chemistry.

Research Mentor: Kendall N.Houk, Chemistry and Biochemistry

GREGORY GEDMAN
Integrative Biology and Physiology

Vocal learning is a complex phenotype involving the imitation of sounds heard in a social context and is the basis of song and speech in songbirds and human respectively. However, the genetic drivers of this behavior remain largely unknown. Dr. Gedman has demonstrated passion for defining the molecular mechanisms enabling vocal learning across a variety of species.

Dr. Gedman is using ChIP-seq analysis to identify ZEB2 binding sites across the finch genome in search of potential sites of regulation. Through this analysis, he will explore how downstream targets of ZEB2 impact vocal learning regions across species. This work will provide a better understanding of how song birds learn and could provide a deeper understanding on how humans develop speech.

Research Mentor: Stephanie A. White, Integrative Biology and Physiology
Dr. Daniel Ha’s research aim is to develop and apply state-of-the-art systems biology approaches to understand the molecular mechanisms underlying host-microbiome interactions in health and disease. He has developed bioinformatics tools and studied how microbes alter various molecular layers in host systems through a multitissue multiomics approach. His research delineates causal factors for host disease state and builds the foundation for new therapeutic avenues and diagnostic and preventative measures that involve the gut microbiota.

Research Mentor: Xia Yang, Integrative Biology and Physiology

Dr. Ha’s research aims to develop and apply state-of-the-art systems biology approaches to understand the molecular mechanisms underlying host-microbiome interactions in health and disease. He has developed bioinformatics tools and studied how microbes alter various molecular layers in host systems through a multitissue multiomics approach. His research delineates causal factors for host disease state and builds the foundation for new therapeutic avenues and diagnostic and preventative measures that involve the gut microbiota.

Research Mentor: Xia Yang, Integrative Biology and Physiology

Dr. Hayes-Larson’s postdoctoral accomplishments span important contributions to understanding of Alzheimer’s disease and related dementias in understudied populations, and advancement in epidemiologic tools used to study determinants of dementia and inform policies to promote population health. Her substantive research focuses on understanding psychosocial drivers of dementia incidence and racial and ethnic inequalities in disease burden. She was recently awarded a prestigious National Institute on Aging K99/R00 career development to support her growing research agenda on the impact of life course traumatic stress, a racially patterned exposure, on cognitive decline and late-life brain health. Additionally, Dr. Hayes-Larson concentrates on epidemiologic methods for causal inference, including using statistical simulations to understand sources and potential magnitude of bias in dementia and cognitive aging research, and development of statistical transportability tools for observational studies to facilitate obtaining generalizable estimates from highly-selected samples, which is particularly important for monitoring health disparities and informing intervention decisions.

Research Mentor: Elizabeth R. Mayeda, Epidemiology

Telomerase is an RNA-protein complex that maintains the DNA at ends of telomeres, the physical ends of chromosomes. It is a highly regulated determinant of cellular aging, stem cell renewal, and tumorigenesis, and mutations in its components lead to a variety of telomere biology disorders including aplastic anemia and pulmonary fibrosis. High resolution structures of telomerase and its interactions with telomeres have until recently been lacking, hindering a complete understanding of mechanism and mode of action that could lead to drug development. In a series of three landmark papers published in Nature, Yao He has used cryo electron microscopy to elucidate details of the mechanism of telomerase synthesis of ‘G-strand’ telomeric DNA repeats (TTGGG in Tetrahymena, TTAGGG in humans); structural basis of telomerase activation and recruitment to telomeres; and structures and recruitment of specialized complexes (CST–DNA polymerase D-primase) for synthesis of the complimentary C-strand.

Research Mentor: Juli Feigon, Chemistry and Biochemistry
Dr. Man Hua’s studies focus on the radiation belt electron dynamics and resonant wave-particle interactions that play a significant role in altering electron dynamics. Her study revealed for the first time the natural upper limit of electron acceleration by chorus waves, which provides a new explanation of the observed most intense radiation environment apart from the previous theory that has been accepted for almost 60 years. In addition, based on the recent experiment of rocket exhaust driven amplification of very-low-frequency (VLF) waves originated from the ground-based station, her study provided the first reported that VLF transmitter waves play a dual role in electron acceleration at higher energies and losses at lower energies. Moreover, one of her studies quantified how the uncertainties in the model inputs influence the simulation results. Overall, her studies are crucial to advance the current understanding and benefit the future forecast of radiation belt electrons.

Research Mentor: Jacob Bortnik, Atmospheric and Oceanic Sciences

Dr. Hung’s primary study has investigated the prevalence and fate of metal(loids) and antibiotic resistance in urban and agricultural environments and explored the corresponding microbial ecology. The combination of lab-scale and field-scale experiments covering a diversity of topics helped discover the patterns of lead pollution in local communities of Los Angeles, identify new sources of antibiotic resistance in urban green infrastructure, and elucidated the potential fate and transport of antibiotic resistance in land-applied biosolids in Bakersfield, California. He aims to combine field and laboratory experiments with novel quantitative analyses to explore how different factors affect antibiotic resistance, and by extension ecological and public health. Answers from this research can lead to applied science projects that directly inform medical treatment options and environmental management decisions, including the presence of specific clinically-relevant pathogens.

Research Mentor: Jennifer Jay, Civil and Environmental Engineering

Dr. Kourdougli has been doing research into the causes of Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism. Using the latest, most advanced techniques in modern neuroscience, Dr. Kourdougli has discovered one of the earliest brain circuit deficits in a mouse model of FXS. His studies at UCLA demonstrate that inhibitory neurons are hypoactive and disconnected from excitatory neurons during early development of the cerebral cortex. This causes a significant proportion of these inhibitory neurons to die in FXS. Remarkably, he finds that boosting their activity levels with a novel drug ameliorates sensory hypersensitivity in Fragile X mice. Dr. Kourdougli’s research has enormous clinical significance and may inspire future clinical trials in FXS.

Research Mentor: Carlos Portera-Cailliau, Neurology
Do present generations hold moral obligations for the health of future generations? What values shape the pursuit of genetically related children through assisted reproduction? Using an interdisciplinary approach based in philosophy and empirical research, Dr. Le Goff examines how concepts, norms, and practices around reproduction and heredity are redefined by contemporary biology. At the core of her research are germ cells, the reproductive cells that ultimately become eggs and sperm and form the biological link between generations. Epigenetics shows that changes caused by the environment can be carried by germ cells across generations. Dr. Le Goff analyzes how it transforms our understanding of inheritance and intergenerational responsibilities. In the stem cell lab, the development of germ cells is modelled in vitro, potentially leading in the future to eggs and sperm produced in vitro. Dr. Le Goff’s work helps open social debate around this technology by eliciting and analyzing the perspectives of researchers and potential users.

Research Mentor: Hannah Landecker, Institute for Society and Genetics and Sociology

Dr. Ma's work at UCLA focuses on developing hybrid physics-based and data-driven modeling for soft structures and robots. Her work achieves the following:

1. Expands the design space for planar fabrication of composite structures using active learning algorithms. For the first time, demonstrates the capability of designing kirigami-inspired, fully soft structures that can morph into arbitrary target 3D shapes.

2. Extends the design of soft morphing structures to exhibit bistability via machine learning and scaling analysis.

3. Accelerates the inverse design of rod-like structures using machine learning and discrete elastic rod algorithms.

4. Digitalizes the traditional CNC machining systems to make informative decisions on machining parameters to achieve a good surface finish of machined parts.

Research Mentor: M. Khalid Jawed, Mechanical and Aerospace Engineering
Dr. Miao combines environmental microbiology and engineering to advance understanding and design strategies for pollutants control in groundwater, stormwater, wastewater, and soil, with the aim for robust and sustainable environment and ecosystem. His laboratory- and field-based work helps in identifying and characterizing emerging contaminants, and also proactively developing innovative technologies for the remediation of hazardous compounds in complex environments. Dr. Miao also applies molecular biological tools, multiple omics, and computations to analyze, explain, and predict the fate and transport of contaminants during engineering processes. Consequently, those results have inspired researchers from multi-disciplines, and converted and utilized by industrial and consulting communities for cost-effective and environmental-friendly engineering design and decision-making for real-world problems.

Research Mentor: Shaily Mahendra, Civil and Environmental Engineering

EREZ MICHAELY

Physics and Astronomy

Dr. Michaely's research field is gravitational dynamics, classical and relativistic, at all scales, from comets to super massive blackholes. Dr. Michaely developed a novel dynamic channel that involves the interactions of wide pairs of stars or compact objects like black holes with neighbors that fly about the galaxy. These interactions can result in collisions and exotic phenomena like gravitational wave mergers.

Research Mentor: Smadar Naoz, Physics and Astronomy

STEVEN NIETO

Psychology

Dr. Nieto started his career studying addiction in animals. As a postdoctoral fellow, he began applying what he learned from animal studies to the study of humans with addictive disorders. Dr. Nieto offers a unique perspective about how to integrate knowledge generated from animal studies to the treatment of humans who struggle with addiction. He has validated the Addiction Neuroclinical Assessment which focuses on clinical characteristics that can be observed in animal and human studies and that can inform treatment planning for addiction.

Research Mentor: Lara A. Ray, Psychology
Dr. Qian’s postdoctoral research primarily focuses on the development of van der Waals (vdW) heterostructures and superlattices, and low temperature quantum transport studies on these novel material platforms to explore their unique properties. Using vdW integration approach, atomically flat interfaces can be achieved between various systems through vdW bonding, and can be extended to multiple layers forming high-order superlattice structures. The vdW integration method defines general pathways to overcome the materials degrading problems during the integration, enabling high-quality vdW heterostructures and superlattices with robust device performance and exotic quantum properties. It could open a new field of artificial solids for exploring emerging physical phenomena, new device concepts and unprecedented technological opportunities.

Research Mentor: Xiangfeng Duan, Chemistry and Biochemistry

GUIDO ROBERTS-BORSANI
Physics and Astronomy

For his contributions to our understanding of the birth and early growth of galaxies, from first light to cosmic reionization. Building on his pioneering work with the Hubble and Spitzer Space Telescopes, Dr Roberts-Borsani has assumed a clear leadership role in the planning and analysis of the first observations with the James Webb Space Telescope, that are transforming our view of the first billion years of the history of the Universe.

Research Mentor: Tommaso Treu, Physics and Astronomy

FARID SALAZAR WONG
Physics and Astronomy

The future Electron-Ion Collider (EIC), a giant microscope to the sub-nuclear realm, will be at the forefront of the nuclear and particle physics program of the United States in the upcoming years. This discovery machine will allow physicists to unlock many of the properties of gluons, carriers of strong nuclear force, inside protons and nuclei. An intriguing possibility of the EIC program is the discovery of a novel regime of nuclear matter at high gluon densities known as the Color Glass Condensate (CGC). Dr. Salazar and collaborators have contributed to uplifting the search for the CGC into a precision science by calculating quantum corrections for the first time to one of the critical particle production processes to be measured at the EIC. Furthermore, they recently proposed a model of the sub-nuclear fluctuations in the CGC to describe the correlation of particle production in the collisions of protons and nuclei at the Large Hadron Collider.

Research Mentor: Zhong-Bo Kang, Physics and Astronomy
AVIV SOLODOCH
atmospheric and oceanic sciences

Dr. Solodoch’s research addresses the behavior of the ocean’s “overturning circulation”, by which cold polar waters are transported globally and influence the climate system. Dr. Solodoch has clarified how the pathways of these deep ocean flows “blend” together, shedding light on recent trends in deep ocean temperatures and their potential implications. To alleviate the paucity of in-situ oceanic observations in polar regions, Dr. Solodoch has developed methods that may be used to indirectly measure the overturning circulation using satellites. These findings provide much-needed clarity on the behavior of the ocean’s deep circulation and allow the scientific community to circumvent current limitations on observing this circulation.

Research Mentor: Andrew L. Stewart, Atmospheric and Oceanic Sciences

YANG SONG
bioengineering

Dr. Song takes a multidisciplinary approach and develops engineering tools to investigate the biophysical regulation of epigenetic state and cell reprogramming, which has wide applications in regenerative medicine, disease modeling and drug screening. Specifically, he demonstrates that for the first time, a transient mechanical deformation of cell nucleus can increase the accessibility of genome for cell reprogramming. He is working on two exciting applications for gene editing and immune cell engineering for cancer therapy. His work opens a new avenue in mechanobiology and mechanomedicine.

Research Mentor: Song Li, Bioengineering

WENXIN SONG
medicine

After a meal, your body needs to move dietary fat (i.e., triglycerides) into the bloodstream and then must distribute the triglycerides to fat cells (for storage) or to muscle cells (for use as fuel). Distributing triglycerides to tissues requires an enzyme, lipoprotein lipase (LPL). LPL is an unusual enzyme in that it is secreted by fat cells and muscle cells but then must be captured and transported into blood vessels (capillaries). A small protein, GPIHBP1, is crucial for binding LPL and moving it into capillaries. Wenxin transformed our understanding of LPL and GPIHBP1 function. She discovered that a negatively charged region of GPIHBP1 accelerates LPL binding and is required for moving LPL into capillaries. She also discovered that GPIHBP1 stabilizes LPL and preserves its enzymatic activity. Wenxin’s research is highly relevant to clinical medicine. Inefficient processing of triglycerides by LPL increases the risk of coronary heart disease.

Research Mentor: Stephen G. Young, Medicine
MANISHA SWAIN
Chemistry and Biochemistry

Dr. Swain conducted research on Dealkenylation of Alkynylation of feedstock olefins using ozone, vitamin C, and catalytic amount of a FeII salt, providing access to a variety of synthetically useful alkyl-substituted functionalized alkynes that are enantiopure.

Research Mentor: Ohyun Kwon, Chemistry and Biochemistry

DANIEL VELEZ-RAMIREZ
Microbiology, Immunology and Molecular Genetics

Dr. Velez-Ramirez’s research aims to understand the way microorganisms sense their environment and respond to it. His study organisms are Trypanosoma brucei and Trypanosoma cruzi, causative agents of sleeping sickness and Chagas disease, respectively. Sleeping sickness is endemic to sub-Saharan Africa, is characterized by disruption of the sleep-wake cycle and is fatal if left untreated. Chagas disease is endemic to the entire American continent, with increasing and alarming presence in Northern Mexico and Southern US, is characterized by enlargement of the heart, esophagus and colon, being heart failure the main cause of death. A better understanding of the molecular mechanisms behind the environmental sensing in these organisms, will have a tremendous impact on the fields of cell biology and molecular parasitology, and will allow the identification of potential therapeutic targets for drug development.

Research Mentor: Kent Hill, Microbiology, Immunology and Molecular Genetics

XIAN XIA
Microbiology, Immunology and Molecular Genetics

Dr. Xia conducted research on high-resolution structures of disease-related processes. His research has provided profound insight into viral and parasitic infections, and red blood cell morphogenesis, informing rational development of drugs and vaccines.

- Besides SARS-CoV-2 which leads to the current pandemic, there are many other emerging viruses that have a great impact on human health. A prominent example is bluetongue virus (BTV), a livestock pathogen in both the UK and the US. Structures of BTV at different states revealed the detailed mechanism of virus entry, assembly, and genome packaging.

- Trypanosoma brucei is a human parasite that causes African sleeping sickness. The high-resolution structure of the swimming motor shows unique features of this parasite, which may present novel therapeutic targets.

- The cell skeleton endows human red blood cells (RBC) with a specific shape. Structures of nine native membrane protein complexes identified interactions essential for mechanical stability of RBC.

Research Mentors: Z. Hong Zhou, Microbiology, Immunology, and Molecular Genetics; Kent Hill, Microbiology, Immunology and Molecular Genetics; Polly Roy, Immunology and Molecular Genetics
Special thanks to the Chancellor’s Award for Postdoctoral Research selection committee:

ONYEBUCHI ARAH, Associate Dean, Division of Graduate Education and Committee Co-Chair

PAUL BOUTROS, Vice Dean for Research, David Geffen School of Medicine/Human Genetics

DAVID COHEN, Associate Dean for Research and Faculty Development, Luskin School of Public Affairs/Social Welfare

KAREN GYLYS, Professor, Nursing

ELAINE HSIAO, Associate Professor, Integrative Biology and Physiology

KERRI JOHNSON, Associate Dean for Research, Communications

ANSHUL KOGAR, Assistant Professor, Physics and Astronomy

CHONG LIU, Assistant Professor, Chemistry and Biochemistry

RENA LUX, Associate Dean, Division of Graduate Education and Committee Co-Chair

ALI MOSIEH, Professor, Materials Science and Engineering

GREGORY PAYNE, Sr. Associate Dean for Bioscience Graduate and Postgraduate Education, Geffen School of Medicine

PHILIPPE SAUTET, Professor, Chemical and Biomolecular Engineering

IGOR SPIGELMAN, Chair, Section of Biosystems and Function, Dentistry

JANET TOMIYAMA, Professor, Psychology

LIEVEN VANDENBERGHE, Professor, Electrical Engineering
NOMINEES

2022 EXCELLENCE IN POSTDOCTORAL MENTORING AWARD

OLUJIMI AJIJOLA, Medicine/Cardiology
DOLORES BOZOVIC, Physics
LAURA DENARDO, Physiology
SOPHIE DENG, Ophthalmology
JULI FEIGON, Chemistry and Biochemistry
SONYA GABRIELIAN, Psychiatry
PEYMAN GOLSHANI, Neurology
THOMAS GRAEBER, Molecular and Medical Pharmacology
ALICIA IZQUIERDO, Psychology
RICHARD KANER, Chemistry and Biochemistry
TRAVIS LONGCORE, Institute of the Environment and Sustainability
CATHERINE LORD, Psychiatry and Education
ALDONS LUSIS, Microbiology, Immunology, and Molecular Genetics
SHAILY MAHENDRA, Civil and Environmental Engineering
ELIZABETH ROSE MAYEDA, Epidemiology
SANJAY MOHANTY, Civil and Environmental Engineering
CAIUS G. RADU, Molecular and Medical Pharmacology
ROXANA RADU, Ophthalmology
MITCHELL SPEARRIN, Mechanical and Aerospace Engineering
MARC A. SUCHARD, Human Genetics
KATE WASSUM, Psychology
DAVIS WILLIAMS, Ophthalmology

Special thanks to the Postdoctoral Association at UCLA and Excellence in Postdoctoral Mentoring Award selection committee:

VALERIA GONZÁLEZ, Psychology
TANYA GUPTA, Psychiatry and Biobehavioral Sciences
AMELIA PALERMO, Molecular and Medical Pharmacology
FRANCES STAPLES, Atmospheric and Oceanic Sciences
MARTIN TODERI, Physics and Astronomy
THANK YOU

THE DIVISION OF GRADUATE EDUCATION WOULD LIKE TO EXTEND DEEP APPRECIATION TO OUR FELLOW FUNDERS THIS YEAR:

RONALD BROOKMEYER, Dean, School of Public Health
CHRISTINA CHRISTIE, Dean, School of Education and Information Studies
STEVE DUBINETT, Interim Dean, David Geffen School of Medicine
BRUCE DUNN, Interim Dean, Henry Samueli School of Engineering and Applied Science
MIGUEL GARCÍA-GARIBAY, Dean, Division of Physical Sciences
TRACY JOHNSON, Dean, Division of Life Sciences
PAUL KREBSBACH, Dean, School of Dentistry
ABEL VALENZUELA, Interim Dean, Division of Social Sciences
ROGER M. WAKIMOTO, Vice Chancellor for Research and Creative Activities
CALIFORNIA NANOSYSTEM INSTITUTE